土壤之家-土壤学论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

sigmaplot教程
查看: 7056|回复: 0

植物-微生物联合修复镍污染土壤研究进展

[复制链接]
发表于 2019-3-4 14:17:04 | 显示全部楼层 |阅读模式
植物-微生物联合修复镍污染土壤研究进展
Research Progress of Plant-microbe Remediation of Nickel Contaminated Soil
投稿时间:2017-09-04  修订日期:2017-12-07
DOI:
中文关键词:  植物-微生物    土壤修复
Key Words:plant-microbe  nickel  soil remediation
基金项目:四川省科技支撑计划项目(NO. 2015SZ0209, 2016SZ0075),四川省应用基础项目(NO. 2017JY0242)
作者单位E-mail
瞿攀 四川省原子能研究院 qupan91@163.com
伏毅 四川省原子能研究院
刘绵学 四川省原子能研究院
王艳 四川省原子能研究院
黄敏 四川省原子能研究院 minhuang@siae.cn
摘要点击次数: 60
全文下载次数: 113
中文摘要:
      土壤健康是粮食安全的保障,人类活动给土壤造成的污染亟待治理。镍是人体必需微量元素,但过量的镍具有较大的毒性。目前我国土壤中镍污染比较严峻,应尽快响应《土壤污染防治行动计划》来改善土壤中镍污染状况。本文综述了植物-微生物联合修复技术的基本原理,和微生物在镍污染土壤中对植物生长状况、有效态镍含量以及植物吸收镍的影响,对寻找合适的植物和微生物修复镍污染土壤具有重要意义。并展望了有机酸的加入对植物-微生物联合修复效果,以及PGPB库的建立和我国超富集植物的寻找也是研究的重点。
Abstract:
      Soil health is the guarantee of food security. And the pollution caused by human activities to the soil needs urgent treatment. Nickel is an essential trace element in human beings, but excessive amounts of nickel are toxic. At present, the pollution of nickel in soil is very serious in our country. The soil pollution prevention action plan should be responded to as soon as possible to improve nickel contamination in soil. This paper summarized the basic principle of the microbe-assisted phytoremediation, and the effects of adding microorganisms in nickel contaminated soil on plant growth conditions, available Ni content and plants on the absorption of nickel. It was of great significance to find suitable plants and microorganisms for remediation of nickel contaminated soil. And it was expected that the effect of organic acids on plant-microbe combined repair. And establishing the PGPB Library and looking for our hyper accumulator are also the focus of research.
参考文献(共43条):
[1] 环境保护部,国土资源部. 全国土壤污染状况调查公报[J]. 国土资源通讯, 2014(8): 26-29
[2] 刚葆琪,庄志雄. 我国镍毒理学研究进展[J]. 卫生毒理学杂志, 2000, 14(3): 129-135
[3] Costa M, Davidson T L, Chen H B, et al. Nickel carcinogenesis: Epigenetics and hypoxia signaling[J]. Mutation Research, 2005, 592(1-2): 79-88
[4] 吴茂江. 镍与人体健康[J]. 微量元素与健康研究, 2014, 31(1): 74-75
[5] Salt D E, Blaylock M, Kumar N P B A, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants[J]. Biotechnology, 1995, 13(5): 468-474
[6] Ho C, Hseu Z, Chen N, et al. Evaluating heavy metal concentration of plants on a serpentine site for phytoremediation applications[J]. Environmental Earth Sciences, 2013, 70(1): 191-199
[7] Adiloglu S, Saglam M T, Adiloglu A, et al. Phytoremediation of nickel (Ni) from agricultural soils using canola (Brassica napus L.)[J]. Desalination Water Treatment, 2016, 57(6SI): 2383-2388
[8] 郭 平,谢忠雷,李 军,等. 长春市土壤重金属污染特征及其潜在生态风险评价[J]. 地理科学, 2005, 25(1): 108-112
[9] 管东生,陈玉娟,阮国标. 广州城市及近郊土壤重金属含量特征及人类活动的影响[J]. 中山大学学报(自然科学版), 2001, 40(4): 93-96, 101
[10] 吴 龙,金 铨,龚立科,等. 杭州地区稻田土壤中镉、铅、汞、砷、铬和镍的污染状况[J]. 中国卫生检验杂志, 2017(11): 1621-1623
[11] 陈永琴. 成都市近郊蔬菜地土壤重金属污染状况调查与评价[J]. 安徽农业科学, 2013(22): 9257-9258, 9272
[12] 张福金,尤美云,刘建平,等. 内蒙古城郊菜地土壤重金属污染状况分析[J]. 内蒙古农业科技, 2008(5): 74-75, 88
[13] Puschenreiter M, Stoger G, Lombi E, et al. Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate[J]. Journal of Plant Nutrition and Soil Science, 2001, 164(6): 615-621
[14] 蔡信德,仇荣亮,陈桂珠. 微生物在镍污染土壤修复中的作用[J]. 云南地理环境研究, 2005, 17(3): 9-12, 17
[15] Malhotra M, Srivastava S. Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth[J]. European Journal of Soil Biology, 2009, 45(1): 73-80
[16] Glick B R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment[J]. Biotechnology Advances, 2003, 21(5): 383-393
[17] Hassan W, Bashir S, Ali F, et al. Role of ACC-deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution[J]. Environmental Earth Sciences, 2016, 75(3): 1-14
[18] Ma Y, Rajkumar M, Luo Y, et al. Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake[J]. Journal of Hazardous Materials, 2011, 195: 230-237
[19] Wani P A, Khan M S, Zaidi A. Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants[J]. Chemosphere, 2007, 70(1): 36-45
[20] Hurek T, Reinhold-Hurek B. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes[J]. Journal of Biotechnology, 2003, 106(2-3): 169-178
[21] Ashraf M A, Hussain I, Rasheed R, et al. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review[J]. Journal of Environmental Management, 2017, 198(Pt 1): 132-143
[22] Chen Y P, Rekha P D, Arun A B, et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities[J]. Applied Soil Ecology, 2006, 34(1): 33-41
[23] Rodriguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria[J]. Plant and Soil, 2006, 287(1-2): 15-21
[24] Rajkumar M, Ae N, Prasad M N, et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology, 2010, 28(3): 142-149
[25] 马 莹,骆永明,滕 应,等. 内生细菌强化重金属污染土壤植物修复研究进展[J]. 土壤学报, 2013, 50(1): 195-202
[26] Wijayawardena M A, Naidu R, Megharaj M, et al. Using soil properties to predict in vivo bioavailability of lead in soils[J]. Chemosphere, 2015, 138: 422-428
[27] Wani P A, Khan M S, Zaidi A. Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil[J]. Archives of Environmental Contamination and Toxicology, 2008, 55(1): 33-42
[28] Ma Y, Prasad M N, Rajkumar M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnology Advances, 2011, 29(2): 248-258
[29] Chen X, Liu X, Zhang X, et al. Phytoremediation effect of Scirpus triqueter noculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils[J]. Journal of Hazardous Materials, 2017, 325: 319-326
[30] 蔡信德,仇荣亮,陈桂珠,等. 接种泡囊假单胞菌对土壤生物性质及A.corsicum吸收Ni的影响[J]. 生态学报, 2006, 26(5): 1405-1413
[31] Visioli G, Vamerali T, Mattarozzi M, et al. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens[J]. Frontiers in Plant Science, 2015, 6: 638
[32] Rajkumar M, Freitas H. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard[J]. Bioresource Technology, 2008, 99(9): 3491-3498
[33] Ma Y, Rajkumar M, Freitas H. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria[J]. Journal of Hazardous Materials, 2009, 166(2): 1154-1161
[34] Ma Y, Rajkumar M, Freitas H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp[J]. Chemosphere, 2009, 75(6): 719-725
[35] Babu A G, Kim J D, Oh B T. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1[J]. Journal of Hazardous Materials, 2013, 250-251: 477-483
[36] Mohammadzadeh A, Tavakoli M, Chaichi M R, et al. Effects of nickel and PGPBs on growth indices and phytoremediation capability of sunflower (Helianthus annuus L.)[J]. Archives of Agronomy and Soil Science, 2014, 60(12): 1765-1778
[37] 朱宏吉,胡宗福. 解磷酵母Pichia farinose FL7用于镍污染土壤植物提取的研究[J]. 中国生物工程杂志, 2015(11): 36-45
[38] Kamran M A, Eqani S A, Bibi S, et al. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress[J]. Ecotoxicology and Environmental Safety, 2016, 126: 256-263
[39] Khan W U, Yasin N A, Ahmad S R, et al. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils[J]. International Journal of Phytoremediation, 2017, 19(5): 470-477
[40] Abou-Shanab R A, Angle J S, Delorme T A, et al. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale[J]. New Phytologist, 2003, 158(1): 219-224
[41] Zaidi S, Usmani S, Singh B R, et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea[J]. Chemosphere, 2006, 64(6): 991-997
[42] Weyens N, Croes S, Dupae J, et al. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination[J]. Environmental Pollution, 2010, 158(7): 2422-2427
[43] 王学锋,崔 倩. EDTA、柠檬酸对向日葵吸收重金属Cd-Ni的影响[Z]. 第二届全国农业环境科学学术研讨会, 中国云南昆明, 2007


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|小黑屋|手机版|Archiver|网站地图|土壤之家

GMT+8, 2024-4-26 23:30 , Processed in 0.220791 second(s), 18 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表