请选择 进入手机版 | 继续访问电脑版

土壤之家-土壤学论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

土壤考研资料sigmaplot12.0破解版下载sigmaplot教程土壤污染
土壤修复案例土壤招聘信息土壤修复技术有哪些 
查看: 5810|回复: 0

[其他] 方差分析的应用场合、基本思想和前提条件

[复制链接]
发表于 2012-4-25 15:52:51 | 显示全部楼层 |阅读模式
1.应用场合
当影响因素是定性变量(一般称为分组变量或原因变量),观测结果是定量变量(一般称为结果变量或反应变量),常用的数据处理方法是对均数或均值向量进行假设检验。
若只有一个原因变量,而且其水平数k2,一元时常用U检验、t检验、秩和检验,多元时用多元检验(T2检验或wilks^检验);若原因变量的水平数k3或原因变量的个数≥2,一元时常用下检验,也叫一元方差分析(简写成ANOVA)或非参数检验,多元时用多元方差分析(简写成MANOVA,其中最常用的是Wilks^检验)。
2.基本思想
方差分析的基本思想可概述为:把全部数据关于总均数的离均差平方和分解成几个部分,每一部分表示某一影响因素或诸影响因素之间的交互作用所产生的效应,将各部分均方(即方差)与误差均方相比较,依据下分布作出统计推断,从而确认或否认某些因素或交互作用的重要性。
由于试验设计的类型多种多样,不同的设计类型往往需用不同的方差分析模型去处理,因此,用来作为度量影响因素作用大小的尺子——误差的均方,也就不是一成不变的了。这就出现了误差固定的设计类型及其定量资料的统计分析方法和误差变动的设计类型及其定量资料的统计分析方法。
3.前提条件
无论是进行ANOVA还是MANOVA,严格他说,都要求资料满足正态性和方差齐性的。要求,但方差齐性有时较难满足,此时可采用有关的非参数检验或对数据作某种变换后使之满足前提条件。此处仅给出一元情形时,如何用SAS程序实现对资料的正态性和方差齐性检验。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|小黑屋|手机版|Archiver|网站地图|土壤之家

GMT+8, 2024-5-18 09:06 , Processed in 0.157745 second(s), 20 queries .

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表